A Neural Approach to Compression of Hyperspectral Remote Sensing Imagery

نویسنده

  • Victor-Emil Neagoe
چکیده

This paper presents an original research for hyperspectral satellite image compression using a fully neural system with the following processing stages: (1) a Hebbian network performing the principal component selection; (2) a system of "k" circular self-organizing maps for vector quantization of the previously extracted components. The software implementation of the above system has been trained and tested for a hyperspectral image segment of type AVIRIS with 16 bits/pixel/band (b/p/b). One obtains the peak-signal-toquantization noise ratio of about 50 dB, for a bit rate of 0.07 b/p/b (a compression ratio of 228:1). We also extend the previous model for removal of the spectral redundancy (between the R, G, B channels) of color images as a particular case of multispectral image compression; we consider both the case of color still images and that of color image sequences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

Evaluation of Noise Removal of Radiance Data on Onboard Data Compression of Hyperspectral Imagery

This paper evaluates the impact of removing random noise of radiance data using a spectral-spatial smoothing approach on data compression onboard a hyperspectral satellite. A datacube acquired using a Short Wave Infrared Full Spectrum Imager II for target detection application of hyperspectral data was tested. The impact was evaluated using both the statistical based measures and a remote sensi...

متن کامل

Investigating Alteration Zone Mapping Using EO-1 Hyperion Imagery and Airborne Geophysics Data

Hyperspectral remote sensing records reflectance or emittance data in a large sum of contiguous and narrow spectral bands, and thus has many information in detecting and mapping the mineral zones. On the other hand, the geological and geophysical data gives us some other fruitful information about the physical characteristics of soil and minerals that have been recorded from the surface. ...

متن کامل

One-Dimensional Convolutional Neural Network Land-Cover Classification of Multi-Seasonal Hyperspectral Imagery in the San Francisco Bay Area, California

In this study, a 1-D Convolutional Neural Network (CNN) architecture was developed, trained and utilized to classify single (summer) and three seasons (spring, summer, fall) of hyperspectral imagery over the San Francisco Bay Area, California for the year 2015. For comparison, the Random Forests (RF) and Support Vector Machine (SVM) classifiers were trained and tested with the same data. In ord...

متن کامل

Efficient Lossless Compression of 4D Hyperspectral Image Data

Time-lapse hyperspectral imaging technology has been used for various remote sensing applications due to its excellent capability of monitoring regions of interest over a period of time. However, large data volume of fourdimensional hyperspectral imagery demands for massive data compression techniques. While conventional 3D hyperspectral data compression methods exploit only spatial and spectra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001